














Figure 6: Rendered scene consisting of one single mesh (left) and
picking buffer containing the normalized world coordinates (right).

mat, the X3D lighting model cannot be fully implemented. Accord-
ing to this lighting model the material’s diffuse color modulates the
color of the texture in case of a one- or two-channel texture (in-
tensity or luminance/alpha). If instead the texture has three or four
channels, the texture color is used. Moreover, because the origi-
nal information, whether the image has an alpha channel or not, is
lost, it can’t be used as a selector for alpha sorting and blending,
thereby forcing the runtime to first sort all objects and always en-
able blending. But in this regard, the X3D spec is outdated in that it
neither provides a possibility for render state control nor for speci-
fying the sorting order. Hence, to alleviate some of those problems,
the extensions described in [Jung et al. 2007] could be used.

Due to the extended tag set of HTML5 the integration of other me-
dia like sounds and movies is comparatively simple to implement
via the new <audio> and <video> elements. Similar to an im-
age the latter can be directly captured to a texture object that resides
on the GPU, with the exception that this has to happen every frame.
Likewise, for implementing the X3D ”AudioClip” node, internally
an <audio> tag is created, appropriately parameterized and ap-
pended to the given DOM tree. But because the <audio> element
does not support 3D sound, again we have the limitation that e.g.
the spatial sound model of X3D cannot be implemented.

4.3.3 Picking and Interaction

Mouse events (cf. Section 3.7) require implementing a picking al-
gorithm, which usually is done via ray intersect by traversing the
scene-graph and coarsely checking bounding boxes, and testing all
triangles if this test passes. But this heavily CPU-based process is
not fast enough with JavaScript as lots of matrix operations etc. are
involved. Skipping the triangle test leads to a speed-up, but this
approximation is wrong for most geometries as shown in Figure 6:
here, the whole 3D scene consists of only one single mesh. Hence,
there is only one bbox to check, which leads to wrong picking re-
sults, not allowing any useful interaction.

Thus, we use a render-buffer-based approach (as shown in Figure
6) instead of standard intersection tests. Here, the picking buffer is
implemented by first rendering the scene into a texture attached to a
framebuffer object: the normalized world coordinates are encoded
into the RGB channels, and the alpha channel contains the object
ID that references the rendered ”Shape”. Occlusions are automati-
cally handled by the depth buffer. By retrieving the values located
under the mouse pointer via gl.readPixels() the picked 3D object is
obtained. Similar to 2D elements the mouse event handlers attached
to a picked object, or one of its parents, is called then.

In Figure 3 (right) a 3D object’s onclick event is evaluated: the blue
sphere represents an X3D ”Anchor” node that allows browsing to
another web page similar to default web links, and when clicking
the red box, a message box with the pick position pops up. More-
over, if one of the 3D objects was clicked, the olive sphere is repo-
sitioned to the last pick-point. According to our performance tests,

rendering the same scene into the picking buffer with half resolution
is already slightly faster than a scene traversal with pure bounding
box tests due to the hardware accelerated rendering. Furthermore,
this method yields correct results for all types of 3D surfaces.

As floating-point-precision textures are not yet supported in We-
bGL and due to the 8-bit buffer only a maximum of 255 objects
are supported per rendering-pass. Hence, especially for big scenes
only a rather bad precision for the coordinates is achieved. Addi-
tionally, when solely relying on user-defined vertex attributes with-
out any further semantics – as conceived with the aforementioned
WebSG approach – the system neither can determine the bound-
ing box nor calculate a precise geometry intersection. This requires
to provide additional hints for specifying which vertex attributes
(given as ”FloatVertexAttribute”) shall be treated as positions.

5 Application Prototypes

We have developed several prototypical applications for testing and
to show X3DOM’s capabilities. Beneath some feature demos that
only concentrate on certain functionalities, our demos (see Figure
7) cover real-world scenarios. The first demo shows a line-up of
3D objects, as it is done with images or videos today. Here, 3D is
used as just another medium alike. The second application depicts
a car configurator and explains, how 3D could be used in the near
future as not only a part of a website, but as an online tool. The last
one is a small Augmented Reality (AR) application, which brings
virtual and real content on a user’s desktop closer together. In the
following, we will take a closer look on these applications.

The Coform 3D Gallery shows a line-up of over 30 virtual ob-
jects. Historian vases were scanned with a 3D scanner. This allows
not only a digital conservation of ancient artifacts but offers the
possibility for convenient comparison, too. The results have been
exported into the X3D file format. The application framework con-
sists of a HTML page with a table grid with 36 cells, each filled
with a thumbnail image of a virtual vase object. As soon as the user
clicks on a thumbnail, a second layer pops up inside our HTML file
showing the vase in 3D. The user can now scale or rotate it or he can
close the layer to return to the grid again. Technically, we’re open-
ing a subpage with the declared X3D content which is rendered by
X3DOM. The subpage is loaded inside an iFrame within each layer
inside the main page. Figure 7 (left) shows a screenshot.

Our Online Car Configurator shows a 3D car with a minimal-
istic UI (see Figure 7, middle). A user can choose certain colors
from a given color palette or change the rims in real-time. In ad-
dition, the car can be viewed in almost any position, since noth-
ing is prerendered. Since the car is a declared 3D model, even
small or complex animations of the doors or other parts are pos-
sible. Todays online configurators are using semi 3D presentation
methods, where certain points of a car are prerendered or photogra-
phies. Hence, it is time intensive for developers to change models
or other media data and real-time user interaction is limited. The
communication between the GUI and the 3D model is implemented
in JavaScript. The buttons send onclick events, which trigger func-
tions in the script. A node’s attribute is changed by first fetching
the node by its unique ID via document.getElementById() and then
calling the setAttribute() function as outlined in Section 3.5.

The Augmented Reality Application uses X3DOM for hardware
accelerated rendering. It shows the earth globe, which hovers above
a marker (Figure 7, right). A second textured sphere shows the ac-
tual clouds surrounding the whole planet – via live data loaded into
the 3D scene. Like every AR application, we need a webcam and
a video image to achieve the augmentation effect. Sine there is no
standard or native HTML interface for hardware devices, we make
use of Adobe Flash-based marker tracking, which is available for

192



Figure 7: Application prototypes (from left to right): Coform3D – a line-up of multiple scanned 3D objects integrated with JavaScript into
HTML; a simple car configurator; a desktop Augmented Reality scene using Adobe Flash for marker tracking and X3DOM for rendering.

non commercial use [Spark 2009]. We adapted the marker tracker
and implemented an interface for data exchange between the in-
cluded Flash object and our HTML page. As soon as the marker is
detected, a JavaScript interfaces receives the marker’s position and
orientation. The tracker’s values are used to change and transform
our 3D objects. Although the tracking still uses Flash, the demo
scene is modular enough to change and switch tracking as soon as
there are native standards for camera access available.

6 Conclusion and Future Work

We presented an intermediate architecture that supports the ongo-
ing HTML/X3D integration effort, but also provides a solution to
web application developers until X3D is a native part of HTML.
In contrast to most other approaches, our framework integrates 3D
content into the web without the need to forge new concepts, but
utilizes today’s standards. Our design and architecture brings X3D
to mass market and promotes 3D in a declarative manner for every-
day use. As a thin layer between HTML and X3D we deliver a con-
nector that employs well-known standards on both sides. So far, we
have presented first implementation results of a scalable architec-
ture for HTML/X3D integration, which provides a single declara-
tive developer interface but also supports various backends through
a powerful fallback-model for runtime and rendering modules.

The X3D standard as web technology uses a plugin model for de-
ployment. For desktop browsing it is a question of choice, whether
to download a tool or not. But since more and more people are
browsing on smartphones or other mobile devices, plugins are still
an issue: not all platforms support them and vice versa. Thus,
X3DOM may be a powerful solution for mobile devices, too. More-
over, all presented applications utilize our approach of declarative
3D integrated into HTML combined with web standards like CSS
and JavaScript. We have also shown the range of possible appli-
cations from plain 3D content containers to more sophisticated 3D
applications with potential to become an online application, where
other web pages may be placed in or be parts of 3D itself.

Future work will cover cross-browser issues (e.g. Microsoft’s IE
does not support WebGL but may support other 3D APIs in the
future) and address the seamless integration of CSS. We intend to
finish our fallback model as we’d like to implement missing nodes
and continue working on our shader framework, including fog and
clip planes, to mention a few.

References

ADOBE, 2010. Flash. http://www.adobe.com/products/flashplayer/.

AKENINE-MÖLLER, T., HAINES, E., AND HOFFMANN, N. 2008.
Real-Time Rendering, 3 ed. AK Peters, Wellesley, MA.

AMBIERA, 2010. Copperlicht. http://www.ambiera.com/.

ARNAUD, R., AND BARNES, M. 2006. Collada. AK Peters.

BEHR, J., ESCHLER, P., JUNG, Y., AND ZÖLLNER, M. 2009.
X3DOM – a DOM-based HTML5/ X3D integration model. In
Proceedings Web3D ’09, ACM Press, New York, USA, 127–135.

BENEDETTO, M. D., 2010. Spidergl. http://spidergl.org/.

BRUNT, P., 2010. Glge. http://www.glge.org/.

CONSORTIUM, W., 2010. X3d and html5 working group.
http://www.web3d.org/x3d/wiki/index.php/X3D and HTML5.

CROCKFORD, D. 2008. JavaScript: The Good Parts. O’Reilly,
Sebastopol, CA.

DELILLO, B., 2009. Webglu.
http://github.com/OneGeek/WebGLU.

GOOGLE, 2009. O3d; an javascript based scene-graph api.
http://code.google.com/apis/o3d/.

JUNG, Y., FRANKE, T., DÄHNE, P., AND BEHR, J. 2007. Enhanc-
ing X3D for advanced MR appliances. In Proceedings Web3D
’07, ACM Press, New York, USA, 27–36.

KAY, L., 2010. Scenejs. http://www.scenejs.org/.

KHRONOS, 2009. Webgl public wiki.
http://www.khronos.org/webgl/wiki/Main Page.

KHRONOS, 2010. Webgl specification. https://cvs.khronos.org/svn/
repos/registry/trunk/public/webgl/doc/spec/WebGL-spec.html.

MUNSHI, A., GINSBURG, D., AND SHREINER, D. 2009. OpenGL
ES 2.0 Programming Guide. Addison-Wesley, Boston.

SHREINER, D., WOO, M., NEIDER, J., AND DAVIS, T. 2006.
OpenGL Programming Guide, 5 ed. Addison-Wesley, Boston.

SONS, K., 2010. Xml3d. http://www.xml3d.org/.

SPARK, 2009. Flartoolkit. http://www.libspark.org/wiki/saqoosha/
FLARToolKit/en.

THOMAS, G., 2010. Learning webgl. http://learningwebgl.com/.

VUKICEVIC, V., 2009. Canvas 3d. http://blog.vlad1.com/
2007/11/26/canvas-3d-gl-power-web-style/.

W3C, 2009. Declarative 3d scenes in html5. http://dev.
w3.org/html5/spec/Overview.html#declarative-3d-scenes.

W3C, 2009. Html 5 specification, canvas section. http://dev.
w3.org/html5/spec/Overview.html#the-canvas-element.

W3C, 2009. Mathml. http://www.w3.org/Math/.

W3C, 2009. Namespaces in xml. W3C Consortium.
http://www.w3.org/TR/REC-xml-names/.

W3C, 2009. Svg. http://www.w3.org/Graphics/SVG/.

WEB3D. 2008. X3D. http://www.web3d.org/x3d/.

WEB3DCONSORTIUM, 2009. Scene access interface(sai), iso/iec
19775-2.2:2009. http://www.web3d.org/x3d/specifications/ISO-
IEC-FDIS-19775-2.2-X3D-SceneAccessInterface/.

193




